Reduced osmotically inactive Na storage capacity and hypertension in the Dahl model.
نویسندگان
چکیده
Recent evidence suggested that Na can be stored in an osmotically inactive form. We investigated whether osmotically inactive Na storage is reduced in a rat model of salt-sensitive (SS) hypertension. SS and salt-resistant (SR) Dahl-Rapp rats as well as Sprague-Dawley (SD) rats were fed a high (8%)- or low (0.1%)-NaCl diet for 4 wk (n = 10/group). Mean arterial pressure (MAP) was measured at the end of the experiment. Wet and dry weights, water content, total body Na (TBS), and bone Na content were measured by dessication and dry ashing. MAP was higher in both Dahl strains than in SD rats. In SS rats, 8% NaCl led to Na accumulation, water retention, and hypertension due to impaired renal Na excretion. There was no dietary-induced Na retention in SR and SD rats. TBS was variable; nevertheless, TBS was significantly correlated with body water and MAP in all strains. However, the extent of Na-associated volume and MAP increases was strain specific. Osmotically inactive Na in SD rats was threefold higher than in SS and SR rats. Both SS and SR Dahl rat strains displayed reduced osmotically inactive Na storage capacity compared with SD controls. A predisposition to fluid accumulation and high blood pressure results from this alteration. Additional factors, including impaired renal Na excretion, probably contribute to hypertension in SS rats. Our results draw attention to the role of osmotically inactive Na storage.
منابع مشابه
Osmotically inactive skin Na+ storage in rats.
Compared with age-matched men, women are resistant to the hypertensive effects of dietary NaCl; however, after menopause, the incidence of salt-sensitive hypertension is similar in women and men. We recently suggested that osmotically inactive Na+ storage contributes to the development of salt-sensitive hypertension. The connective tissues, including those immediately below the skin that may se...
متن کاملExtrarenal Na+ balance, volume, and blood pressure homeostasis in intact and ovariectomized deoxycorticosterone-acetate salt rats.
Water-free Na+ storage may buffer extracellular volume and mean arterial pressure (MAP) in spite of Na+ retention. We studied the relationship among internal Na+, K+, water balance, and MAP in Sprague-Dawley rats, with or without deoxycorticosterone-acetate (DOCA) salt, with or without ovariectomy (OVX). The rats were fed a low-salt (0.1% NaCl) or high-salt (8% NaCl) diet for 5 weeks. DOCA salt...
متن کاملIs the osmotically inactive sodium storage pool fixed or variable?
Recently, there is renewed interest in the role of osmotically inactive Na(+) storage during Na(+) retention. Although it is well accepted that a portion of the total exchangeable Na(+) reservoir is osmotically inactive, there is current controversy as to whether the osmotically inactive Na(+) storage pool is fixed or variable during Na(+) retention. In this article, we analyze the current scie...
متن کاملMobilization of osmotically inactive Na+ by growth and by dietary salt restriction in rats.
The idea that an osmotically inactive Na(+) storage pool exists that can be varied to accommodate states of Na(+) retention and/or Na(+) loss is controversial. We speculated that considerable amounts of osmotically inactive Na(+) are lost with growth and that additional dietary salt excess or salt deficit alters the polyanionic character of extracellular glycosaminoglycans in osmotically inacti...
متن کاملInternal sodium balance in DOCA-salt rats: a body composition study.
The idea that Na(+) retention inevitably leads to water retention is compelling; however, were Na(+) accumulation in part osmotically inactive, regulatory alternatives would be available. We speculated that in DOCA-salt rats Na(+) accumulation is excessive relative to water. Forty female Sprague-Dawley rats were divided into four subgroups. Groups 1 and 2 (controls) received tap water or 1% sal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 283 1 شماره
صفحات -
تاریخ انتشار 2002